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Abstract: Restrictions imposed by gauge invariance in noncommutative spaces together

with the effects of ultraviolet/infrared mixing lead to strong constraints on possible can-

didates for a noncommutative extension of the Standard Model. In this paper, we

study a general class of 4-dimensional noncommutative models consistent with these re-

strictions. Specifically we consider models based upon a gauge theory with the gauge

group U(N1) × U(N2) × . . . × U(Nm) coupled to matter fields transforming in the (anti)-

fundamental, bi-fundamental and adjoint representations. Noncommutativity is introduced

using the Weyl-Moyal star-product approach on a continuous space-time. We pay partic-

ular attention to overall trace-U(1) factors of the gauge group which are affected by the

ultraviolet/infrared mixing. We show that, in general, these trace-U(1) gauge fields do not

decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating

effects in the low-energy effective theory. Making these effects unobservable in the class of

models we consider would require pushing the constraint on the noncommutativity mass

scale far beyond the Planck mass (MNC & 10100 MP) and severely limits the phenomeno-

logical prospects of such models.
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1. Introduction and discussion of results

Gauge theories on spaces with noncommuting coordinates

[xµ, xν ] = i θµν , (1.1)

provide a very interesting new class of quantum field theories with intriguing and sometimes

unexpected features. These noncommutative models can arise naturally as low-energy ef-

fective theories from string theory and D-branes. As field theories they must satisfy a

number of restrictive constraints detailed below, and this makes them particularly inter-

esting and challenging for purposes of particle physics model building. For general reviews

of noncommutative gauge theories the reader can consult e.g. refs. [1 – 3].

There are two distinct approaches used in the recent literature for constructing quan-

tum field theories on noncommutative spaces. The first approach uses the Weyl-Moyal

star-products to introduce noncommutativity. In this case, noncommutative field theories

are defined by replacing the ordinary products of all fields in the Lagrangians of their

commutative counterparts by the star-products

(φ ∗ ϕ)(x) ≡ φ(x) e
i
2
θµν

←

∂µ

→

∂ν ϕ(x) . (1.2)

Noncommutative theories in the Weyl-Moyal formalism can be viewed as field theories on

ordinary commutative spacetime. For example, the noncommutative pure gauge theory

action is

S = − 1

2g2

∫

d4x Tr(Fµν ∗ Fµν) , (1.3)
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where the commutator in the field strength also contains the star-product. The impor-

tant feature of this approach is the fact that phase factors in the star-products are not

expanded in powers of θ and the θ dependence in the Lagrangian is captured entirely.

This ability to work to all orders in θ famously gives rise to the ultraviolet/infrared

(UV/IR) mixing [4, 5] in the noncommutative quantum field theory which we will re-

view below.

The second approach to noncommutativity does not employ star-products. It instead

relies [6, 7] on the Seiberg-Witten map which represents noncommutative fields as a function

of θ and ordinary commutative fields. This approach essentially reduces noncommutativ-

ity to an introduction of an infinite set of higher-dimensional (irrelevant) operators, each

suppressed by the corresponding power of θ, into the action. There are two main differ-

ences compared to the Weyl-Moyal approach. First, in practice one always works with the

first few terms in the power series in θ and in this setting the UV/IR mixing cannot be

captured. Second, the Seiberg-Witten map is a non-linear field transformation. Therefore,

one expects a non-trivial Jacobian and possibly a quantum theory different from the one

obtained in the Weyl-Moyal approach. In the rest of this paper we will concentrate on the

Weyl-Moyal approach.

In the context of Weyl-Moyal noncommutative Standard Model building, a number

of features of noncommutative gauge theories have to be taken into account which are

believed to be generic [8]:

1. the mixing of ultraviolet and infrared effects [4, 5] and the asymptotic decoupling of

U(1) degrees of freedom [9, 10] in the infrared;

2. the gauge groups are restricted to U(N) groups [11, 12] or products thereof;

3. fields can transform only in (anti-)fundamental, bi-fundamental and adjoint represen-

tations [13 – 15];

4. the charges of matter fields are restricted [16] to 0 and ±1, thus requiring extra care in

order to give fractional electric charges to the quarks;

5. gauge anomalies cannot be cancelled in a chiral noncommutative theory [13, 16 – 21],

hence the anomaly-free gauge theory must be vector-like.

Building upon an earlier proposal by Chaichian et al. [22], the authors of ref. [8]

constructed an example of a noncommutative embedding of the Standard Model with

the purpose to satisfy all the requirements listed above. The model of [8] is based on

the gauge group U(4) × U(3) × U(2) with matter fields transforming in noncommuta-

tively allowed representations. Higgs fields break the noncommutative gauge group down

to a low-energy commutative gauge theory which includes the Standard Model group

SU(3) × SU(2) × U(1)Y . The U(1)Y group here corresponds to ordinary QED, or more

precisely to the hypercharge Y Abelian gauge theory. The generator of U(1)Y was con-

structed from a linear combination of traceless diagonal generators of the microscopic
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theory U(4) × U(3) × U(2). Because of this, the UV/IR effects – which can affect only

the overall trace-U(1) subgroup of each U(N) — were not contributing to the hyper-

charge U(1)Y . However some of the overall trace-U(1) degrees of freedom can survive

the Higgs mechanism and thus contribute to the low-energy effective theory, in addi-

tion to the Standard Model fields. These additional trace-U(1) gauge fields logarith-

mically decouple from the low-energy effective theory and were neglected in the anal-

ysis of ref. [8]. The main goal of the present paper is to take these effects into ac-

count.

We will find that the noncommutative model building constraints, and, specifically, the

UV/IR mixing effects in the trace-U(1) factors in the item 1 above, lead to an unacceptable

defective behavior of the low-energy theory, when we try to construct a model having the

photon as the only massless colourless U(1) gauge boson. Our findings rule out a class of

noncommutative extensions of the Standard Model.

(a) This class is based on a noncommutative quantum gauge theory defined on a four-

dimensional continuous space-time (UV cutoff sent to infinity). Within the Weyl-Moyal

approach there are two ways to avoid our conclusions. Either one can introduce extra

dimensions [23] or one can give up the continuous space-time.

(b) Noncommutative models we concentrate on are similar to the example in [8] and

should be distinguished from earlier ones studied in [22] for two reasons.1 First, we include

the effects of the UV/IR mixing in our analysis. Second, is that our models preserve full

noncommutative gauge invariance including the Higgs and Yukawa sectors. As such, the

difficulties related to unitarity violation discussed in [25] do not apply in our case.

(c) Finally, as already mentioned earlier, we are not pursuing the Seiberg-Witten map

approach and as such our conclusions cannot be directly applied to the class of noncom-

mutative models which rely on Taylor expansion in powers of θ in [7, 6, 26 – 32].

The UV/IR mixing in noncommutative theories arises from the fact that certain classes

of Feynman diagrams acquire factors of the form eikµθµνpν (where k is an external momen-

tum and p is a loop momentum) compared to their commutative counter-parts. These

factors directly follow from the use of the Weyl-Moyal star-product (1.2). At large values

of the loop momentum p, the oscillations of eikµθµνpν improve the convergence of the loop

integrals. However, as the external momentum vanishes, k → 0, the divergence reappears

and what would have been a UV divergence is now reinterpreted as an IR divergence in-

stead. This phenomenon of UV/IR mixing is specific to noncommutative theories and does

not occur in the commutative settings where the physics of high energy degrees of freedom

does not affect the physics at low energies.

1The construction in [8] of correct values of hypercharges of the Standard Model from the product gauge

group was influenced by [22]. The authors of ref. [22] advocated a noncommutative model which satisfied

criteria 2, 3 and 4 listed in the beginning of this section. Their model was based on the noncommutative

gauge group U(3) × U(2) × U(1) with matter fields transforming only in (bi-)fundamental representations,

and remarkably, it predicted correctly the hypercharges of the Standard Model. In many respects their

model is similar to the bottom-up approach of [24] to the string embedding of the Standard Model in

purely commutative settings. Unfortunately, the noncommutative U(3)×U(2)×U(1) model of [22] ignores

all the effects of the UV/IR mixing which alters the infrared behavior of the U(1) hypercharge sector.
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There are two important points concerning the UV/IR mixing [5, 9, 10, 12] which we

want to stress here. First, the UV/IR mixing occurs only in the trace-U(1) components

of the noncommutative U(N) theory, leaving the SU(N) degrees of freedom unaffected.

Second, there are two separate sources of the UV/IR mixing contributing to the dispersion

relation of the trace-U(1) gauge fields: the Π1 effects and the Π2 effects, as will be explained

momentarily.

A study of the Wilsonian effective action, obtained by integrating out the high-energy

degrees of freedom using the background field method, and keeping track of the UV/IR

mixing effects, has given strong hints in favour of a non-universality in the infrared [9, 10].

In particular, the polarisation tensor of the gauge bosons in a noncommutative U(N) gauge

theory takes form [5, 9, 10]

ΠAB
µν = ΠAB

1 (k2, k̃2)
(

k2gµν − kµkν

)

+ ΠAB
2 (k2, k̃2)

k̃µk̃ν

k̃2
, with k̃µ = θµνk

ν . (1.4)

Here A,B = 0, 1, . . . N2−1 are adjoint labels of U(N) gauge fields, AA
µ , such that A,B = 0

correspond to the overall U(1) subgroup, i.e. to the trace-U(1) factor. The term in (1.4)

proportional to k̃µk̃ν/k̃2 would not appear in ordinary commutative theories. It is trans-

verse, but not Lorentz invariant, as it explicitly depends on θµν . Nevertheless it is perfectly

allowed in noncommutative theories. It is known that Π2 vanishes for supersymmetric non-

commutative gauge theories with unbroken supersymmetry, as was first discussed in [5].

In general, both Π1 and Π2 terms in (1.4) are affected by the UV/IR mixing. More

precisely, as already mentioned earlier, the UV/IR mixing affects specifically the Π0 0
1 com-

ponents and generates the Π0 0
2 components in (1.4). The UV/IR mixing in Π0 0

1 affects the

running of the trace-U(1) coupling constant in the infrared,

1

g(k, k̃)2U(1)

= 4Π0 0
1 (k2, k̃2) → − b0

(4π)2
log k2 , as k2 → 0 , (1.5)

leading to a logarithmic decoupling of the trace-U(1) gauge fields from the SU(N) low-

energy theory, see refs. [8 – 10] for more detail.

For nonsupersymmetric theories, Π0 0
2 can present more serious problems. In theories

without supersymmetry, Π0 0
2 ∼ 1/k̃2, at small momenta, and this leads to unacceptable

quadratic IR singularities [5]. In theories with softly broken supersymmetry (i.e. with

matching number of bosonic and fermionic degrees of freedom) the quadratic singularities

in Π0 0
2 cancel [5, 9, 10]. However, the subleading contribution Π0 0

2 ∼ const, survives [33]

unless the supersymmetry is exact. For the rest of the paper we will concentrate on

noncommutative Standard Model candidates with softly broken supersymmetry, in order

to avoid quadratic IR divergencies. In this case, Π0 0
2 ∼ ∆M2

susy,
2 as explained in [33].

The presence of such Π2 effects will lead to unacceptable pathologies such as Lorentz-

noninvariant dispersion relations giving mass to only one of the polarisations of the trace-

U(1) gauge field, leaving the other polarisation massless.

The presence of the UV/IR effects in the trace-U(1) factors makes it pretty clear that a

simple noncommutative U(1) theory taken on its own has nothing to do with ordinary QED.

2∆M2
SUSY = 1

2

P

s
M2

s −
P

f
M2

f is a measure of SUSY breaking.
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The low-energy theory emerging from the noncommutative U(1) theory will become free at

k2 → 0 (rather than just weakly coupled) and in addition will have other pathologies [8 –

10, 33]. However, one would expect that it is conceivable to embed a commutative SU(N)

theory, such as e.g. QCD or the weak sector of the Standard Model into a supersymmetric

noncommutative theory in the UV, but some extra care should be taken with the QED U(1)

sector [8]. We will show that the only realistic way to embed QED into noncommutative

settings is to recover the electromagnetic U(1) from a traceless diagonal generator of some

higher U(N) gauge theory. So it seems that in order to embed QED into a noncommutative

theory one should learn how to embed the whole Standard Model [8]. We will see, however,

that the additional trace-U(1) factors remaining from the noncommutative U(N) groups

will make the resulting low-energy theories unviable (at least for the general class of models

considered in this paper).

In order to proceed we would like to disentangle the mass-effects due to the Higgs

mechanism from the mass-effects due to non-vanishing Π2. Hence we first set Π2 = 0

(this can be achieved by starting with an exactly supersymmetric theory). It is then

straightforward to show (see section 4) that the Higgs mechanism alone cannot remove all

of the trace-U(1) factors from the massless theory. More precisely, the following statement

is true: Consider a scenario where a set of fundamental, bifundamental and adjoint Higgs

fields breaks U(N1)×U(N2)× · · · ×U(Nm) → H, such that H is non-trivial. Then there is

at least one generator of the unbroken subgroup H with non-vanishing trace. This generator

can be chosen such that it generates a U(1) subgroup.

We can now count all the massless U(1) factors in a generic noncommutative theory

with Π2 = 0 and after the Higgs symmetry breaking. In general we can have the following

scenarios for massless U(1) degrees of freedom in H:

(a) U(1)Y is traceless and in addition there is one or more factors of trace-U(1) in H.

(b) U(1)Y arises from a mixture of traceless and trace-U(1) generators of the noncommu-

tative product group U(N1) × U(N2) × · · · × U(Nm).

(c) U(1)Y has an admixture of trace-U(1) generators as in (b) plus there are additional

massless trace-U(1) factors in H.

In the following sections we will see that none of these options lead to an acceptable

low-energy theory once we have switched on Π2 6= 0, i.e. once we have introduced mass

differences between superpartners. It is well-known [5, 33] that Π2 6= 0 leads to strong

Lorentz symmetry violating effects in the dispersion relation of the corresponding trace-

U(1) vector bosons, and in particular, to mass-difference of their helicity components. If

option (a) was realised in nature, it would lead (in addition to the standard photon) to a

new colourless vector field with one polarisation being massless, and one massive due to

Π2.

The options (b) and (c) are also not viable since an admixture of the trace-U(1) gen-

erators to the photon would also perversely affect photon polarisations and make some of

them massive.3

3One could hope that the trace-U(1) factors could be made massive at the string scale by working in a
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In the rest of the paper we will explain these observations in more detail.

We end this section with some general comments on noncommutative Standard Mod-

elling. This paper refines the earlier analysis of [8]. In that work the trace-U(1) factors

were assumed to be completely decoupled in the extreme infrared and, hence, were ne-

glected. However, it is important to keep in mind that the decoupling of the trace-U(1)’s

is logarithmic and hence slow. Even in presence of a huge hierarchy between the noncom-

mutative mass scale MNC, say of the order of the Planck scale MP ∼ 1019 GeV, and the

scale Λ ∼ (10−14 − 109) eV (electroweak and QCD scale, respectively), where the SU(N)

subgroup becomes strong, the ratio

g2
U(1)

g2
SU(N)

∼
log

(

k2

Λ2

)

log
(

M4
NC

Λ2k2

) & 10−3 (1.6)

is not negligible. In particular, the above inequality holds for any MNC > k & 2Λ. Hence

the complete decoupling of the trace-U(1) degrees of freedom at small non-zero momenta

does not appear to be fully justified and the trace-U(1) would leave its traces in scattering

experiments at accessible momentum scales k ∼ 1 eV − 1010 eV (see section 2 for more

detail).

2. UV/IR mixing and properties of the trace-U(1)

UV/IR mixing manifests itself only in the trace-U(1) part of the full noncommutative U(N).

For this part it strongly affects Π1 and is responsible for the generation of nonvanishing Π2

(if SUSY is not exact). In this section we will briefly review how the UV/IR mixing arises

in the trace-U(1) sector and how this leads us to rule out options (a) and (c) discussed in

section 1.

2.1 Running gauge coupling

Following refs. [9, 10], we will consider a U(N) noncommutative theory with matter fields

transforming in the adjoint and fundamental representations of the gauge group. We use

the background field method, decomposing the gauge field Aµ = Bµ+Nµ into a background

field Bµ and a fluctuating quantum field Nµ, and the appropriate background version of

Feynman gauge, to determine the effective action Seff(B) by functionally integrating over

the fluctuating fields.

theory where these factors are anomalous. Then one could use the Green-Schwarz mechanism [34] to cancel

the anomaly and simultaneously give a large stringy mass to these U(1) factors. This scenario which is

often appealed to in ordinary commutative theories to remove unwanted U(1) factors cannot be used in the

noncommutative setting. The reason is that at scales above the noncommutative mass, the noncommutative

gauge invariance requires the gauge group to be U(N). It cannot become just an SU(N) theory (above the

noncommutative scale) and remain noncommutative, see e.g. [21]. Therefore we require vector-like theories

as stated in item 5.

– 6 –
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To determine the effective gauge coupling in the background field method, it suffices

to study the terms quadratic in the background field. In the effective action these take the

following form (capital letters denote full U(N) indices and run from 0 to N2 − 1),4

Seff 3 2

∫

d4k

(2π)4
BA

µ (k)BB
ν (−k)ΠAB

µν (k). (2.1)

At tree level, ΠAB
µν = (k2gµν − kµkν) δAB/g2

0 is the standard transverse tensor originating

from the gauge kinetic term. In a commutative theory, gauge and Lorentz invariance restrict

the Lorentz structure to be identical to the one of the tree level term. In noncommutative

theories, Lorentz invariance is violated by θ. The most general allowed structure is then

given by eq. (1.4). The second term may lead to the strong Lorentz violation mentioned

in the introduction. This term is absent in supersymmetric theories [5, 9].

Let us start with a discussion of the effects noncommutativity has on Π1 and the

running of the gauge coupling. That is, for the moment, we postpone the study of Π2-

effects by considering a model with unbroken supersymmetry.5 As usual, we define the

running gauge coupling as

(

1

g2

)AB

=

(

1

g2
0

)AB

+ 4ΠAB
1 loop(k). (2.2)

where g2
0 is the microscopic coupling (i.e. the tree level contribution) and Πloop includes

only the contributions from loop diagrams. Henceforth, we will drop the loop subscript.

To evaluate Π at one loop order one has to evaluate the appropriate Feynman diagrams.

The effects of noncommutativity appear via additional phase factors ∼ exp(ipk̃
2 ) in the loop-

integrals. Using trigonometric relations one can group the integrals into terms where these

factors combine to unity, the so called planar parts, and those where they yield ∼ cos(pk̃),

the so called non-planar parts.

For fields in the fundamental representation, the phase factors cancel exactly6 and

only the planar part is non-vanishing. Fundamental fields therefore contribute as in the

commutative theory [9]. In all loop integrals7 involving adjoint fields one finds the following

factor [10],

MAB(k, p) =

(

−d sin
kp̃

2
+ f cos

kp̃

2

)ALM (

d sin
kp̃

2
+ f cos

kp̃

2

)BML

. (2.3)

Using trigonometric and group theoretic relations this collapses to

MAB(k, p) = −N δAB(1 − δ0A cos kp̃). (2.4)

4We use euclidean momenta when appropriate and the analytic continuation when considering the equa-

tions of motion in subsection 2.2.
5Nevertheless, we will give general expressions for Π1 valid also in the non-supersymmetric case.
6One may roughly imagine that for each fundamental field that appears in a Feynman diagram there is

also the complex conjugate field which cancels the exponential factor.
7To keep the equations simple we consider in this section a situation where all particles of a given spin

and representation have equal diagonal masses. Please note that the masses for fermions and bosons in the

same representation may be different as required for SUSY breaking.

– 7 –



J
H
E
P
0
2
(
2
0
0
6
)
0
2
8

j= scalar Weyl fermion gauge boson ghost

αj -1 1
2 −1

2 1

Cj 0 1
2 2 0

dj 1 2 4 1

Table 1: Coefficients appearing in the evaluation of the loop diagrams.

We can now easily see that all effects from UV/IR mixing, marked by the presence of the

cos kp̃, appear only in the trace-U(1) part of the gauge group. The planar parts, however,

are equal for the U(1) and SU(N) parts.

Summing everything up we find the planar contribution (the coefficients αj , Cj , dj are

given in table 1 and C(r) is the Casimir operator in the representation r)

Π1 planar(k
2) = − 2

(4π)2

(

∑

j,r

αjC(r)

[

2Cj +
8

9
dj (2.5)

+

∫ 1

0
dx

(

Cj − (1 − 2x)2dj

)

log
A(k2, x,m2

j,r)

Λ2

])

,

where mj,r is the mass of a spin j particle belonging to the representation r of the gauge

group,

A(k2, x,m2
j,r) = k2x(1 − x) + m2

j,r, (2.6)

and Λ appears via dimensional transmutation similar to ΛMS in QCD. We have chosen the

renormalisation scheme, i.e. the finite constants, such that Π1 planar vanishes at k = Λ.

For the trace-U(1) part the nonplanar parts do not vanish and we find

Π1 nonplanar =
1

2k2

(

Π̂ − Π̃
)

, (2.7)

with

Π̂ =
C(G)

(4π)2

{

8dj

k̃2
− k2 [12Cj − dj]

∫ 1

0
dx K0(

√
A|k̃|)

}

, (2.8)

Π̃ =
4C(G)

(4π)2

{

dj

k̃2
−

(

Cjk
2 − dj

∂2

∂2|k̃|

)
∫ 1

0
dx K0(

√
A|k̃|)

}

, (2.9)

where C(G) = N is the Casimir operator in the adjoint representation.

For illustration, we plot in figure 1 the coupling (2.2) for a toy model which is a

supersymmetric U(2) gauge theory with two matter multiplets and all masses (of all fields)

taken to be equal. We observe that even for large masses the running of the U(1) part

(solid lines) does not stop in the infrared. For masses smaller than the noncommutative

mass scale m2 ¿ MNC the trace-U(1) gauge coupling has a sharp bend at MNC where the

nonplanar parts start to contribute. For larger masses the running stops at the mass scale

m2 only to resume running at a scale ∼ M4
NC/m2 which is, of course, again due to the

nonplanar parts. The dashed lines in figure 1 give the running of the SU(2) part which

receives no nonplanar contributions and behaves like in an ordinary commutative theory.

For m2 = 0 the SU(2) gauge coupling reaches a Landau pole at k = Λ, for all non vanishing

– 8 –
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log10(k/Λ)
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Figure 1: The running gauge couplings gU(1) (solid) and gSU(2) (dashed) for a U(2) theory with two

matter multiplets and all particles of equal mass m = 0, 104, 108, 1012, 1016 Λ, from top to bottom

(left side, solid), as a function of the momentum k, for a choice of |k̃| = θeff |k|, with θeff = 10−20Λ−2.

masses the running stops at the mass scale. We observe that the ratio between the SU(2)

coupling and the trace-U(1) coupling is not incredibly small over a wide range of scales, in

support of our assertion (1.6) in section 1.

Further support comes from looking at the following approximate form for the running

of the gauge coupling. We assume the hierarchy Λ2 ¿ m2 ¿ M2
NC,

4π2

g2
U(1)

= bp
0 log

(

k2

Λ2

)

, for k2 À M2
NC, (2.10)

4π2

g2
U(1)

= bp
0 log

(

k2

Λ2

)

− bnp
0 log

(

k2

M2
NC

)

, for m2 ¿ k2 ¿ M2
NC,

4π2

g2
U(1)

= bp
0 log

(

m2

Λ2

)

− bnp
0

[

log

(

m2

M2
NC

)

+
1

2
log

(

k2

m2

)]

, for k2 ¿ m2.

The gauge coupling for the SU(N) subgroup g2
SU(N) is obtained by setting bnp

0 = 0. For

simplicity let us now consider a situation where we have only fields in the adjoint repre-

sentation. One finds [8, 10] that bnp
0 = 2bp

0 , and

g2
U(1)

g2
SU(N)

= 1, for k2 À M2
NC, (2.11)

g2
U(1)

g2
SU(N)

=
log

(

k2

Λ2

)

log
(

M4
NC

Λ2k2

) , for m2 ¿ k2 ¿ M2
NC,

g2
U(1)

g2
SU(N)

=
log

(

m2

Λ2

)

log
(

M4
NC

Λ2k2

) , for k2 ¿ m2.
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To reach
g2
U(1)

g2
SU(N)

< ε = 10−3 (2.12)

we need log
(

M4
NC

Λ2k2

)

and in turn MNC to be large.

As a generic example let us use Λ = ΛW ∼ 10−14 eV (the scale where the ordinary

electroweak SU(2) would become strong, in absence of electroweak symmetry breaking)

and k = 1eV.8 We find

MNC > Λ
1
2 k

1
2 exp

(

1

4ε
log

(

k2

Λ2

))

∼ 106974 MP. (2.13)

Taking electroweak symmetry breaking into account we have to replace log
(

k2

Λ2

)

by

log
(

M2
EW
Λ2

)

with MEW ∼ 100GeV in (2.13). We find

MNC > 1012474 MP. (2.14)

Let us increase the coupling strength of the SU(N) by using Λ = 0.5 eV. k = 1eV is now

quite close to the strong coupling scale of the SU(N). Without symmetry breaking we find

MNC > 10131 MP. (2.15)

We might be able to reduce this number by some orders of magnitude but without using an

extreme field content it remains always incredibly large. Indeed, one can typically find a

scale k which is not too close to the strong coupling scale of the SU(N) which strengthens

the bounds dramatically. Therefore, as a conservative estimate we propose9

MNC > 10100 MP. (2.16)

To conclude this subsection, let us point out that, in a scattering experiment (as

depicted in figure 2), k is really the scale of the internal momentum, and therefore, non-

vanishing. k̃, too, is non-vanishing in appropriate (remember that we have Lorentz sym-

mery violation) directions of t-channel scattering.

2.2 The effects of a non vanishing Π2 from SUSY breaking

In the previous subsection we made Π2 vanish by working in a supersymmetric theory. Let

us now study, what happens, when supersymmetry is (softly) broken.

Looking only at the trace-U(1) degrees of freedom of a generic noncommutative theory

we have

Π2 =
∑

j

αj

[

1

2
(3Π̃j − Π̂j)

]

. (2.17)

8It is obvious that k2 ¿ M2
NC. In this regime our formulas (2.10) and (2.11) approximate the full result

to a very high precision since threshold effects are negligible.
9Of course, this constraint should not be taken overly serious. Above the string scale one should perform

a string theory analysis. The main point is that the scale we find is way beyond the Planck scale.
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g(k) g(k)
k−→

Figure 2: A typical Feynman diagram for scattering. The effective coupling g depends on the

momentum k.

One easily checks that

Π2 ∼
∑

j

αjdjf(k2, k̃2,mj). (2.18)

If SUSY is unbroken, all masses are equal. Using supersymmetric matching between bosonic

and fermionic degrees of freedom,
∑

j

αjdj = 0, (2.19)

we reproduce the vanishing of Π2. If SUSY is softly broken this cancellation is not complete

anymore (in fact (2.19) still holds and this removes the leading power-like IR divergence

in Π2, however, the subleading effects in Π2 survive). Π2 gets a contribution [33]

Π2=D
∑

j

αjdjm
2
j

[

K0(mk̃) + K2(mk̃)
]

+ O(k2) (2.20)

=C∆M2
SUSY + C ′

∑

j

αjdjm
2
j log(m2

j k̃
2) + · · · ,

with known constants C, C ′ and D. This has dire consequences for the gauge boson.

Let us look at the equations of motion resulting from this additional Lorentz symmetry

violating contribution to the polarisation tensor (we briefly review the equations of motion

for ordinary photons in Appendix A).

In presence of a Higgs field which generates a mass term m2 and using unitary gauge

the field equations in presence of non vanishing Π2 read
(

Π1(k
2gµν − kµkν) + Π2

k̃µk̃ν

k̃2
− m2gµν

)

Aν = 0. (2.21)

Using that unitary gauge implies Lorentz gauge, kµAµ = 0, we can simplify

(Π1k
2 − m2)Aµ + Π2

k̃µk̃ν

k̃2
Aν = 0. (2.22)

To proceed further it is useful to specify a direction for the momentum and the noncom-

mutativity parameters. The photon flies in 3-direction and we have

kµ = (k0, 0, 0, k3). (2.23)

– 11 –



J
H
E
P
0
2
(
2
0
0
6
)
0
2
8

What is the corresponding value of k̃? Since θµν breaks Lorentz invariance, we need to

specify θµν in a particular frame. For the latter, a natural one is the system where the

cosmic microwave background is at rest. In this frame, we assume that the only non-

vanishing components of θµν are

θ13 = −θ31 = θ. (2.24)

This yields,

k̃µ = θµνk
ν = (0, θk3, 0, 0), k̃ 2 = (θk3)2. (2.25)

We start with the ordinary transverse components of Aν ,

Aν
1 = (0, 1, 0, 0). (2.26)

In this direction, (2.22) yields

(Π1k
2 − m2 − Π2)A1,ν = 0. (2.27)

In the other transverse direction,

Aµ
2 = (0, 0, 1, 0), (2.28)

we find

(Π1k
2 − m2)A2,ν . (2.29)

Finally we have the third polarisation (which can be gauged away if and only if m2 = 0),

Aµ = (a, 0, 0, b), k0a − k3b = 0 (2.30)

which results in

(Π1k
2 − m2)A3,ν . (2.31)

We note that the different polarisation states do not mix due to the presence of Π2. The

second and the third polarisation state behave more or less like in the ordinary commutative

case. However, the first has a modified equation of motion, (2.27), in presence of a non-

vanishing Π2.
10

This is another strong argument against a trace-U(1) being the photon [33]. If the

gauge symmetry is unbroken and m2 = 0 we usually have two massless polarisations.

However, a non vanishing Π2 reduces this to one. The other one gets an additional mass

Π2. Since only one polarisation is affected this is a strong Lorentz symmetry violating effect.

Moreover, a negative Π2 would lead to tachyons while a positive mass is phenomenologically

ruled out by the constraint [35]

mγ < 6 × 10−17 eV (2.32)

10One might argue that instead of eq. (2.27) one has to use the rescaled equation (we set m2 = 0 for

simplicity) k2 − Π2(k2,k̃2)

Π1(k2,k̃2)
= 0. For k2 → 0, the second term vanishes since Π1 diverges in this limit.

Therefore, we find an additional solution. However, this solution is rather strange. It does not correspond

to a pole in the propagator (it goes like a log). Moreover, if one calculates the cross section Π2 still upsets

the angular dependence quite severely compared to the ordinary commutative case.
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on the photon mass.11

If we take the trace-U(1) as an additional (to the photon) gauge boson from the

unbroken subgroup H, we would still get strong Lorentz symmetry violation since the

trace-U(1) is not completely decoupled.

In summary, we found in this section that additional trace-U(1) subgroups are not

completely decoupled and should lead to observable effects. In particular, if SUSY is

not exact we have non-vanishing Π2 which gives rise to strong Lorentz symmetry violation

which has not been observed. This rules out possibilities (a) and (c) of section 1. Moreover,

we confirmed that a trace-U(1) is not suitable as a photon candidate.

3. Mixing of trace and traceless parts

From the previous section we concluded that the trace-U(1) groups are unviable as candi-

dates for the SM photon. Therefore, it has been suggested to construct the photon from

traceless U(1) subgroups [8]. It turns out, however, that typically trace and traceless parts

mix and the trace parts contribute their Lorentz symmetry violating properties to the

mixed particle.
For U(2) broken by a fundamental Higgs, the standard Higgs mechanism yields the

symmetry breaking U(2) → U(1). However, the remaining U(1) is a mixture of trace
and traceless parts. If SUSY is broken, the trace-U(1) has a Π2 part in the polari-
sation tensor. Taking this into account we find the following matrix for the equations
of motion

0

B

B

B

B

B

B

@

Π
U(1)
1 k2−Π2 − m2 m2

m2 Π
SU(2)
1 k2−m2

Π
U(1)
1 k2−m2 m2

m2 Π
SU(2)
1 k2−m2

Π
U(1)
1 k2 − m2 m2

m2 Π
SU(2)
1 k2−m2

1

C

C

C

C

C

C

A

,

(3.1)

where the adjoint U(2) and polarisation indices are (0, 1), (3, 1), (0, 2), (3, 2), (0, 3), (3, 3).

We omitted the values 1 and 2 for the adjoint U(2) indices which do not mix with the

trace-U(1) and are not qualitatively different from the commutative case.

The matrix is block diagonal and the second and third polarisation (lower right corner)

behave more or less like their commutative counterparts. We can concentrate on the upper

left 2 × 2 matrix corresponding to the transverse polarisations affected by Π2.

This 2 × 2 matrix admits two solutions for the equations of motion. Expanding for

small Π2 we find,

(

Π
U(1)
1 + Π

SU(N)
1

)

k2=Π2 + O(Π2
2) , (3.2)

(

Π
U(1)
1 + Π

SU(N)
1

)

k2=

(

Π
U(1)
1 + Π

SU(N)
1

)2

Π
U(1)
1 Π

SU(N)
1

m2 +
Π

SU(N)
1

Π
U(1)
1

Π2 + O(Π2
2),

11Even fine-tuning of (2.20) to zero is not an option. Since we have only a finite number of masses this is

at best possible for a finite number of values of |k̃| and we will surely find values of |k̃| where Π2 is nonzero.
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in analogy to (2.27). In absence of Π2 the first solution in eq. (3.2) is a massless one

corresponding to the massless combination of gauge bosons (think of it as the photon).

The second is a massive combination (similar to the Z boson). The presence of non-

vanishing Π2 again leads to a mass Π2

ΠU(1) for the first solution and rules out the “massless”

combination as a reasonable photon candidate.

This example demonstrates that the disastrous effects of Π2 are also present in any

combination which has an admixture of trace-U(1) degrees of freedom. Hence, this rules

out possibilities (b) and (c) from the introduction.

4. Trace-U(1) factors in the unbroken subgroup

In the previous section, we learned in a specific example that even a small admixture of

a trace part spoils the masslessness of the gauge boson corresponding to the unbroken

gauge symmetry. This shows that a viable photon candidate must have a generator with

vanishing (small is not enough) trace.

In our U(2) example with the gauge symmetry broken by a fundamental Higgs field

the trace does not vanish. The generator corresponding to the unbroken U(1) is

∼
(

1 0

0 0

)

, (4.1)

which obviously has non-vanishing trace.

One can try to construct other symmetry breaking mechanisms with larger groups and

products of groups as well as the other representations for the Higgs fields allowed by the

condition 3 of the introduction. However, one always encounters one of the following situa-

tions. Either the remaining U(1) has a generator with non-vanishing trace or there is more

than one unbroken U(1) subgroup. Both situations are in contradiction of observations, as

our discussion of the previous sections shows.

This is generalised and more precisely formulated by the following proposition (already

stated in the introduction): Consider a scenario where a set of fundamental, bifundamental

and adjoint Higgs fields breaks U(N1) × U(N2) × · · · × U(Nm) → H, such that H is non-

trivial. Then there is at least one generator of the unbroken subgroup H with non-vanishing

trace. This generator can be chosen such that it generates a U(1) subgroup.

Let us now turn to a proof of the proposition. Let us start with the simple situation

of one U(N) group. Since we have only one group, we have only fundamental and adjoint

Higgs fields at our disposal. We proceed by switching on one Higgs field (component) after

the other. Let us start with the fundamental field. U(N) symmetry allows us to chose this

field as

φf = (0, . . . , 0, a)T. (4.2)

Case 1: If a = 0 we have no breaking with a fundamental Higgs. In this case we are

finished, because the generator of the original trace-U(1) is proportional to the N × N

unit matrix and therefore commutes with any adjoint Higgs field. Therefore this generator

continues to generate an unbroken trace-U(1) subgroup, as stated in the proposition.
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Case 2: If a 6= 0 gauge symmetry is broken down to the U(N −1) living in the upper N −1

components of any field. A set of generators for this group are the ordinary U(N − 1) in

the upper left (N −1)×(N −1) submatrix and zero in the other components. In particular,

there is a new trace-U(1) with generator

T 1
trace =













1
. . .

1

0













. (4.3)

Under this subgroup an adjoint field decomposes into

φad =

(

φ2
ad φ2

f

(φ2
f )

† φ2
s

)

, (4.4)

where φ2
ad, φ2

f and φ2
s are adjoint, fundamental and singlett fields under the remaining

U(N − 1) symmetry. An additional fundamental field φ̂f decomposes as

φ̂f =

(

φ̂2
f

φ̂2
s

)

(4.5)

into an additional fundamental φ̂2
f and another singlett φ̂2

s . We can now repeat the argu-

ment for the remaining U(N − 1) group starting, again, with the fundamental fields.

This procedure has to stop at some point, i.e. at one point the fundamental φn
f has to be

zero, or the symmetry is broken completely and H would be the trivial group in violation

of the assumptions.

For a product of more than one group the proof is analogous only that we have ad-

ditional bifundamental fields. Let us briefly consider the situation with a product of two

groups U(M) × U(N). Switching on fundamental fields we can end up with:

Case 1: If all fundamentals are zero the symmetry remains unbroken U(M) × U(N). One

can easily see that bifundamental and adjoint fields cannot break the trace-U(1) generated

by the (N + M) × (N + M) unit matrix.12

Case 2: Let us switch on one fundamental field. Without loss of generality we can take

it to be an N fundamental. The symmetry is broken down to U(M) × U(N − 1) with a

new trace-U(1) for the U(N − 1) in analogy to the simple U(N) situation discussed above.

All fields transforming under the U(M) remain unaffected. The fundamental and adjoint

fields for U(N) are decomposed according to eqs. (4.4), (4.5). Finally the bifundamental

decomposes as

φb =
(

φ2
b φ2

b,f

)

(4.6)

into a bifundamental φ2
b under U(M)×U(N − 1) and a fundamental φ2

b,f under U(N − 1).

The argument proceeds by induction. The case of more than two U(N) factors is completely

analogous.

12We can think of U(M) × U(N) embedded into U(N + M) × U(N + M)
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5. Conclusions

Noncommutative gauge symmetry in the Weyl-Moyal approach leads to two main fea-

tures which have to be taken into account for sensible model building. First, there are

strong constraints on the dynamics and the field content. The only allowed gauge groups

are U(N). In addition, the matter fields are restricted to transform as fundamental, bi-

fundamental and adjoint representations of the gauge group. Finally, anomaly freedom

for noncommutative theories requires the theory to be vector like.13 Second, there are

the effects of ultraviolet/infrared mixing. Those lead to asymptotic infrared freedom

of the trace-U(1) subgroup and, if the model does not have unbroken supersymmetry,

to Lorentz symmetry violating terms in the polarisation tensor for this trace-U(1) sub-

group.

We have demonstrated that, although the trace-U(1) decouples in the limit k → 0, the

coupling is not negligibly small at finite momentum scales k, as they appear, for example,

in scattering experiments. Therefore, observations rule out additional unbroken (massless)

trace-U(1) subgroups. An example is the model considered in ref. [8]. In ref. [8], the

trace-U(1) groups were completely discarded before the symmetry breaking scheme was

discussed. A more careful investigation which takes takes into account these subgroups

yields the symmetry breaking U(4) × U(3) × U(2) → SU(3) × SU(2) × (U(1))4 instead of

U(4)×U(3)×U(2) → SU(3)×SU(2)×U(1). Therefore we have superfluous U(1) subgroups.

Following the above lines explicitely one easily finds that one of the U(1)’s has a generator

which is proportional to the 9 × 9 unity matrix.

Noncommutativity explicitly breaks Lorentz invariance. Therefore an additional

Lorentz symmetry violating structure is allowed in the polarisation tensor. This struc-

ture is absent only in supersymmetric models. If supersymmetry is (softly) broken, this

additional structure is present in the polarisation tensor of the trace-U(1). It leads to an

additional mass ∼ ∆M2
SUSY for one of the transverse polarisation states [33]. The tight

constraints on the photon mass therefore exclude trace-U(1)’s as a candidate for the pho-

ton. It turns out that even a small admixture of a trace part to a traceless part (unaffected

by these problems) is fatal. The only way out seems to be the construction of the photon

from a completely traceless generator. A group theoretic argument shows, that this is im-

possible whithout having additional unbroken U(1) subgroups. However, those are already

excluded from the arguments given above.

This result severely restricts the possibilities to construct a noncommutative Standard

model extension. If all of the constraints given at the beginning are fulfilled the noncom-

mutativity scale is pushed to scales far beyond MP. This is to be compared to the less

restrictive constraints MNC & 0.1−10TeV (conservative estimate) obtained from tree level

amplitudes [36] or from an approach where a Taylor expansion in the noncommutativity

parameters is used before quantization, thereby ignoring effects of ultraviolet/infrared mix-

ing and possibly constraints on the field content [7, 6, 26 – 32]. We stress, however, that

13In turn, this eliminates the Green-Schwarz mechanism [34] as a possible source for a (large) mass term

for the trace-U(1) part of the gauge group.
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the latter approach may lead to a completely different quantum theory and therefore our

bounds may not be applicable.

We would like to conclude with a more optimistic prospect.

In general there is no reason to assume that the simple noncommutative model used

here describes correctly the physics at energies ranging from a few eV up to the Planck

mass. In fact, due to the ultraviolet/infrared mixing, a different ultraviolet embedding of

the theory would modify the theory not only in the ultraviolet, but also in the infrared

which can drastically alter our conclusions [23]. In particular, our conclusions are tied

to a slow logarithmic decoupling of the trace-U(1), but if it is changed to a power-like

decoupling, the U(1) factors would safely decouple and leave the Standard Model in peace.

We expect that this can be achieved by embedding the noncommutative theory into a

higher dimensional theory in the ultraviolet (which will have a power-like beta function)

and then appeal to the ultraviolet/infrared mixing to transport this power-like behaviour

to the infrared region for the trace-U(1) gauge coupling (see later work [23]).
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A. Polarsation directions in gauge theories

In this section we review some basics about the counting of degrees of freedom in gauge

theories. In particular, we show how gauge invariance reduces the number of degrees of

freedom from the naive 4 (4 components of the vector field) to 2 and 3 for the massless

and massive case, respectively.

A.1 The massless case

In ordinary QED, the field equations read

¤Aµ − ∂µ(∂νAν) = 0. (A.1)

Using Lorentz gauge,

∂µAµ = 0 (A.2)

eq. (A.1) simplifies to the wave equation

¤Aµ = 0. (A.3)

Writing

Aµ = Cεµ exp(ikx), (A.4)

any εµ is a solution to (A.3) as long as

k2 = 0. (A.5)
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So far we have all 4 polarisations. However, (A.2) implies 4-dimensional transversality,

kµεµ = 0, (A.6)

and reduces the allowed number of polarisations to three. This is still more than the two

polarisation states a photon should have.

However, Lorentz gauge does not completely fix the gauge. We can still use a gauge

transformation Ω with ¤Ω = 0. This allows us to choose A0 = 0. Together with (A.6) this

leads us to the ordinary 3-dimensional transversality,

−→
k · −→ε = 0. (A.7)

A.2 The case with a Higgs field

The presence of a Higgs field modifies (A.1),

¤Aµ − ∂µ(∂νAν) + m2Aµ + m∂µφ2 = 0. (A.8)

Moreover it supplies an additional equation for the Goldstone boson φ2,

¤φ2 + m∂µAµ = 0. (A.9)

One convenient choice of gauge is unitary gauge where

φ2 = 0. (A.10)

We stress from the beginning that unitary gauge implies (A.2), as can be seen from (A.9).

In this gauge eq. (A.8) simplifies,

¤Aµ + m2Aµ = 0. (A.11)

Now everything runs in a similar fashion to the massless case, only that

k2 − m2 = 0. (A.12)

The important difference is that unitary gauge fixes the gauge completely. We cannot make

an additional gauge choice. Therefore it is impossible to get rid of the 3rd polarisation state

which satisfies Lorentz gauge kµεµ = 0. Stated differently we cannot require 3-dimensional

transversality for εµ and we have therefore three allowed polarisation states with equal

masses.
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[24] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a

bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002

[hep-th/0005067].

[25] J.L. Hewett, F.J. Petriello and T.G. Rizzo, Non-commutativity and unitarity violation in

gauge boson scattering, Phys. Rev. D 66 (2002) 036001 [hep-ph/0112003].

[26] S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane and T. Okamoto, Noncommutative

field theory and Lorentz violation, Phys. Rev. Lett. 87 (2001) 141601 [hep-th/0105082].

[27] C.E. Carlson, C.D. Carone and R.F. Lebed, Bounding noncommutative QCD, Phys. Lett. B

518 (2001) 201 [hep-ph/0107291].

[28] W. Behr et al., The z → γγ, gg decays in the noncommutative standard model, Eur. Phys. J.

C 29 (2003) 441 [hep-ph/0202121].

[29] P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in

non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004) 405

[hep-ph/0212292].

[30] X. Calmet, What are the bounds on space-time noncommutativity?, Eur. Phys. J. C 41

(2005) 269 [hep-ph/0401097].

[31] T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon

collider, Phys. Rev. D 70 (2004) 076007 [hep-ph/0406098].

[32] B. Melic, K. Passek-Kumericki and J. Trampetic, K → πγ decay and space-time

noncommutativity, Phys. Rev. D 72 (2005) 057502 [hep-ph/0507231].
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